
Rethinking Process Management for
Interactive Mobile Systems

Jianwei Zheng, Zhenhua Li, Feng Qian, Wei Liu , Hao Lin

Yunhao Liu, Tianyin Xu, Nan Zhang, Ju Wang, Cang Zhang

 Interactive Mobile Systems support

emerging highly interactive apps, e.g.,

AR/VR/MR, 3D games, and metaverse

 Responsiveness: a key metric to measure

the quality of user experience

 Till now slow UI responsiveness (SUR) on

interactive mobile systems is still prevalent

1. Slow UI Responsiveness

3

Typical slow UI responsiveness

2. Frame Rendering Pipeline of Android

From touches to UI frames

Input Event
Dispatch

UI Thread
Processing

RenderThread
Execution

SurfaceFlinger
Composition

Hardware
Display

Sophisticated——
any inefficiencies in each

component/stage can slow
down frame generation！

4

2. Continuous Monitoring Infrastructure

5

 Android’s original diagnostic mechanism is not enough

Android
-MOD

Collecting info of
critical system services

Diagnosis
w/ Android

Lacking insights into
critical system services

Need to modify the
Android framework

 Our continuous monitoring infrastructure

 No formal definition of “perceptible” SUR events

 Lacking insights into critical system services

We collaborate with Xiaomi, a major phone vendor in China

Modifying vanilla Android versions 10.0, 11.0, and 12.0

 Android-MOD: a customized Android system

2. Continuous Monitoring Infrastructure

6

 SUR definition: we did a user study by recruiting a variety of volunteers

to identify perceptible SUR events (i.e., rendering delay > 50 ms)

 System service instrumentation: we modify the code of critical system

services to insert monitoring hooks, e.g., monitoring the lock contention

 Cross-layer in-situ information tracing: e.g., CPU/memory/IO utilization

 Lightweight: negligible runtime overhead

User-perceived times of consecutively dropped frames User consent form

2. Crowdsourcing Measurement

7

Hardware and OS configurations of our measured phone models

We invited 500M Xiaomi users to participate, and 47M opted in

 They upgraded the OS to Android-MOD to record SUR event data

 The measurement lasted for four months (06-09/2022), involving a

wide range of phones across 48 different models and 1M+ apps

3. Key Findings: Hardware

 SUR events occur prevalently on all the 48 models per day

(ranging from 80.42% to 97.73% with an average of 86.95%)

 SUR events happen frequently on each specific model per day

(ranging from 179.59 to 554.68 with an average of 338.28)

 Better hardware cannot effectively reduce SUR events

8
Frequency of SUR events on

each model of phones
Prevalence of SUR events on

each model of phones

3. Key Findings: Frame Drop Rate & OS

 Frame drop rates of specific models are worryingly high: ranging

from 3.09% to 14.12% with an average of 7.91%

 Newer OS cannot effectively mitigate SUR events, owing to higher

stability & robustness of older OSes (Android 10 and 11) and that

Android 12 was still undergoing constant patches and required

mobile apps to adapt to the newly-provided APIs

9
Frame drop rate of each phone model SUR prevalence and frequency of each Android version

3. Key Findings: Mobile Apps

 SUR event occurrences on different apps are skewed

 16.8% SUR events are attributed to top-10 (<0.001%) apps

 Heavy workloads incurred by high-resolution media streaming,

embedded WebView browsers, and complex UI functionalities

10

Top-10 apps ordered by the frequency (or simply
likelihood) of SUR events after normalization

Ranking of apps by their
number of SUR events per day

 System/App developers usually analyze SUR logs by hand

We develop a semi-automatic two-phase analysis pipeline

 The first phase classifies SUR events with the same root cause to a

cluster, and the second phase pinpoints the root cause

11

3. Key Findings: Root Cause Analysis

......

Upload Logs Reproduce & Analyze

Provide

Insights

Online Macro Statistical Analysis Offline Micro Reproduction Analysis

Similarity

Analysis

Traces of System
Services

Traces of Apps/
Critical Processes

CPU/Memory/
IO Usage

Aggregation &

vectorization

Feature Vector Vi
Clusters of Events

C1

C3

C2

.

..
...

Logs of SUR Eventi

CPU Usage;
Memory Usage;

IO Usage;
Java Functions;

Native Functions;
Kernel Functions;

Timestamps;
Process Names;
Thermal Status;
UI Thread Status;

......

3. Key Findings: Root Causes Analysis

12

 Phase 1: Online Macro-level Statistical Analysis
 Clustering results: long CPU scheduling delay (20.98%), slow I/O transactions
(11.32%), insufficient memory (26.70%), and app-specific defects (41%)

 Phase 2: Offline Micro-level Reproduction Analysis
 Define the time window around an SUR event (±1s)
 Quantitatively assess the correlation between the occurrence time of SUR

events and the lifespan of low-priority processes (> 0.91)
 Key insight: The persistent survival of numerous low-priority processes of

hogging apps leads to system resource under-provisioning and contention,
and thus causes SUR events

3. Key Findings: Hogging Apps

13

 Major Keep-Alive Patterns

 Commercial Motivations

 Abuse foreground services (e.g., GPS, Audio, Bluetooth, and
Network) to deliberately increase their processes’ priorities

 Conduct dual-process co-awakening via process binding

 User retention & engagement: escalate user retention and
engagement rates, and thus potentially boost the revenue

 In-app advertisements: continually display ads or push
notifications to users, thereby generating revenue

 Data harvesting: continuously collect user data
 Cross-app awakening: leverage the sustained presence to

promote or awaken other apps from the same developer or
affiliated partners

4. Rethinking Process Management

Manage the lifecycle of each app process

 Decide which process(es) should be kept alive or killed when

system resources become constrained

 Priority: Foreground > Visible > Service > Background > Empty

The state machine that
models the process

management in Android

Over-optimistic Assumption

Process State Transition
Is Deterministic

State Transition Should Consider
Processes’ Actual Behaviors

14

Real-world Scenario

4. Remodeling Process Management

15

GPS Driver

Audio Driver Bluetooth Driver

Network Driver

Kernel Driver

Userspace

Kernel

eBPF

Bytecode

compile

load

Verifier

+ JIT

eBPF

Program

Kprobe

Hook

Uprobe

Hook

LocationManger

AudioManger BluetoothManger

NetworkManger

LocationService

AudioService BluetoothService

ConnectivityService

GpsLocationProvider

AudioTrack BluetoothDroid

netd

Android Framework

Binder IPC

JNI

SysCall

eBPF

maps

S1

Foreground

Empty/

Background

Visible Service

S2 S3 SV

O1 O2 O3 OV

...

TIHMM

read

Android Workflow Data FloweBPF Workflow

attach

attach

manage
invoke

APPs

 TIHMM-based Process State Modeling

 eBPF-based Uniform Authentic Sensing

 Add new hidden states (“hogging”) to the original state machine
 Formalize the process transition as a Time-inhomogeneous Hidden Markov

Model (TIHMM) transition in a time-sensitive manner

 Leverage eBPF to sense the real usage of user-perceptible foreground
services as observations, by attaching probes to the corresponding codes
across kernel and framework

4. Real-world Deployment & Evaluation

 Patched our proposed mechanism to Android-MOD
 Invited the original 47M users to upgrade (60% opted in)
 The evaluation spanned two months (Jan.–Feb. 2023)
 Reduce the prevalence of SUR events by 50%
 Reduce the frequency of SUR events by 60%
 Reduce the battery consumption by 10.7% due to the effective

throttling of resource usages from hogging apps

16

1 10 40 4820 30

Phone Model

0

20

40

60

80

100

P
re

v
a

le
n
c
e

 (
%

)

Prevalence After Optimizations

Reduction

1 10 40 4820 30

Phone Model

0

100

200

300

400

500

F
re

q
u

e
n
c
y

Frequency After Optimizations

Reduction

 With the similar hardware configuration, Android suffers far more

(oftentimes 10X) SUR events than iOS according to our measurement

 Hardware and software co-design of iPhones: iOS can be fine-tuned to

work perfectly with the specific hardware it runs on

 More stringent scrutiny policy: Apple's App Store has stricter guidelines

and a more rigorous app review process than Google Play Store

4. Android vs. iOS

0

2

4

6

8

F
ra

m
e

 D
ro

p
 r

a
te

 (
%

) iOS Android

Douyin
Kwai

Toutia
o

 P
induoduo

Alip
ay

Mobile
QQ

Jingdong

Taobao

W
echat

BiliB
ili

SUR = Slow UI Responsiveness

17

5. Summary of Contributions

18

◼ Conduct the first large-scale measurement study on SUR (Slow UI
Responsiveness) events for Android in the wild with the generous help
from 47 million Xiaomi users; share our continuous monitoring
infrastructure for capturing SUR events on user devices

◼ Present our semi-automatic analysis pipeline for deeply understanding
SUR events; pinpoint the largest root cause of SUR to be the system-wise
resource contention caused by the wide existence of hogging apps

◼ Remodel Android process management to effectively detect & suppress
hogging apps; real-world deployment reduces the occurrence of SUR
events by 60% and saves the battery consumption by 10.7%

◼ Code and data released at https://Android-SUR.github.io
Thanks!
Q & A

https://android-sur.github.io/

	Opening
	Slide 1: Rethinking Process Management for Interactive Mobile Systems

	Background
	Slide 3

	Measurement
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Findings
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Solution
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Summary
	Slide 18

