
Rethinking Process Management for
Interactive Mobile Systems

Jianwei Zheng, Zhenhua Li, Feng Qian, Wei Liu , Hao Lin

Yunhao Liu, Tianyin Xu, Nan Zhang, Ju Wang, Cang Zhang



 Interactive Mobile Systems support

emerging highly interactive apps, e.g.,

AR/VR/MR, 3D games, and metaverse

 Responsiveness: a key metric to measure 

the quality of user experience

 Till now slow UI responsiveness (SUR) on

interactive mobile systems is still prevalent

1. Slow UI Responsiveness
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Typical slow UI responsiveness



2. Frame Rendering Pipeline of Android

From touches to UI frames
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Sophisticated——
any inefficiencies in each 

component/stage can slow 
down frame generation！
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2. Continuous Monitoring Infrastructure
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 Android’s original diagnostic mechanism is not enough

Android
-MOD

Collecting info of 
critical system services

Diagnosis 
w/ Android

Lacking insights into 
critical system services

Need to modify the 
Android framework

 Our continuous monitoring infrastructure

 No formal definition of “perceptible” SUR events

 Lacking insights into critical system services

We collaborate with Xiaomi, a major phone vendor in China

Modifying vanilla Android versions 10.0, 11.0, and 12.0

 Android-MOD: a customized Android system



2. Continuous Monitoring Infrastructure
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 SUR definition: we did a user study by recruiting a variety of volunteers

to identify perceptible SUR events (i.e., rendering delay > 50 ms)

 System service instrumentation: we modify the code of critical system

services to insert monitoring hooks, e.g., monitoring the lock contention

 Cross-layer in-situ information tracing: e.g., CPU/memory/IO utilization

 Lightweight: negligible runtime overhead

User-perceived times of consecutively dropped frames User consent form



2. Crowdsourcing Measurement
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Hardware and OS configurations of our measured phone models

We invited 500M Xiaomi users to participate, and 47M opted in 

 They upgraded the OS to Android-MOD to record SUR event data

 The measurement lasted for four months (06-09/2022), involving a

wide range of phones across 48 different models and 1M+ apps



3. Key Findings: Hardware

 SUR events occur prevalently on all the 48 models per day

(ranging from 80.42% to 97.73% with an average of 86.95%)

 SUR events happen frequently on each specific model per day

(ranging from 179.59 to 554.68 with an average of 338.28)

 Better hardware cannot effectively reduce SUR events
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Frequency of SUR events on 

each model of phones
Prevalence of SUR events on 

each model of phones



3. Key Findings: Frame Drop Rate & OS

 Frame drop rates of specific models are worryingly high: ranging 

from 3.09% to 14.12% with an average of 7.91%

 Newer OS cannot effectively mitigate SUR events, owing to higher

stability & robustness of older OSes (Android 10 and 11) and that

Android 12 was still undergoing constant patches and required

mobile apps to adapt to the newly-provided APIs
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Frame drop rate of each phone model SUR prevalence and frequency of each Android version



3. Key Findings: Mobile Apps

 SUR event occurrences on different apps are skewed

 16.8% SUR events are attributed to top-10 (<0.001%) apps

 Heavy workloads incurred by high-resolution media streaming,

embedded WebView browsers, and complex UI functionalities
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Top-10 apps ordered by the frequency (or simply
likelihood) of SUR events after normalization

Ranking of apps by their
number of SUR events per day



 System/App developers usually analyze SUR logs by hand

We develop a semi-automatic two-phase analysis pipeline

 The first phase classifies SUR events with the same root cause to a 

cluster, and the second phase pinpoints the root cause
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3. Key Findings: Root Cause Analysis
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3. Key Findings: Root Causes Analysis
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  Phase 1: Online Macro-level Statistical Analysis
 Clustering results: long CPU scheduling delay (20.98%), slow I/O transactions 
(11.32%), insufficient memory (26.70%), and app-specific defects (41%)

  Phase 2: Offline Micro-level Reproduction Analysis
 Define the time window around an SUR event (±1s)
 Quantitatively assess the correlation between the occurrence time of SUR 

events and the lifespan of low-priority processes (> 0.91)
 Key insight: The persistent survival of numerous low-priority processes of 

hogging apps leads to system resource under-provisioning and contention,
and thus causes SUR events



3. Key Findings: Hogging Apps
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 Major Keep-Alive Patterns

 Commercial Motivations

 Abuse foreground services (e.g., GPS, Audio, Bluetooth, and 
Network) to deliberately increase their processes’ priorities

 Conduct dual-process co-awakening via process binding

 User retention & engagement: escalate user retention and 
engagement rates, and thus potentially boost the revenue

 In-app advertisements: continually display ads or push 
notifications to users, thereby generating revenue

 Data harvesting: continuously collect user data
 Cross-app awakening: leverage the sustained presence to 

promote or awaken other apps from the same developer or 
affiliated partners



4. Rethinking Process Management

Manage the lifecycle of each app process

 Decide which process(es) should be kept alive or killed when 

system resources become constrained

 Priority: Foreground > Visible > Service > Background > Empty

The state machine that 
models the process 

management in Android

Over-optimistic Assumption

Process State Transition 
Is Deterministic

State Transition Should Consider
Processes’ Actual Behaviors
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Real-world Scenario



4. Remodeling Process Management
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 TIHMM-based Process State Modeling

 eBPF-based Uniform Authentic Sensing

 Add new hidden states (“hogging” ) to the original state machine
 Formalize the process transition as a Time-inhomogeneous Hidden Markov 

Model (TIHMM) transition in a time-sensitive manner

 Leverage eBPF to sense the real usage of user-perceptible foreground 
services as observations, by attaching probes to the corresponding codes 
across kernel and framework



4. Real-world Deployment & Evaluation

 Patched our proposed mechanism to Android-MOD
 Invited the original 47M users to upgrade (60% opted in)
 The evaluation spanned two months (Jan.–Feb. 2023)
 Reduce the prevalence of SUR events by 50%
 Reduce the frequency of SUR events by 60%
 Reduce the battery consumption by 10.7% due to the effective 

throttling of resource usages from hogging apps
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 With the similar hardware configuration, Android suffers far more 

(oftentimes 10X) SUR events than iOS according to our measurement

 Hardware and software co-design of iPhones: iOS can be fine-tuned to 

work perfectly with the specific hardware it runs on

 More stringent scrutiny policy: Apple's App Store has stricter guidelines 

and a more rigorous app review process than Google Play Store

4. Android vs. iOS
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5. Summary of Contributions
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◼  Conduct the first large-scale measurement study on SUR (Slow UI 
Responsiveness) events for Android in the wild with the generous help 
from 47 million Xiaomi users; share our continuous monitoring 
infrastructure for capturing SUR events on user devices

◼  Present our semi-automatic analysis pipeline for deeply understanding 
SUR events; pinpoint the largest root cause of SUR to be the system-wise
resource contention caused by the wide existence of hogging apps

◼  Remodel Android process management to effectively detect & suppress 
hogging apps; real-world deployment reduces the occurrence of SUR
events by 60% and saves the battery consumption by 10.7%

 

◼  Code and data released at https://Android-SUR.github.io
Thanks!
Q & A

https://android-sur.github.io/
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