
Fusing Speed Index during Web Page Loading

Wei Liu , Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian

1

ACM SIGMETRICS / IFIP PERFORMANCE 2022
Mumbai, India

June 6-10, 2022

1. Background

2. Motivation

3. Design

4. Evaluation

5. Conclusion

2

Outline

Web page load performance is important

3

1. Background

Metrics to evaluate page load performance

Conventional metrics

◼ Page Load Time (PLT)

◼ Time to First/Largest Paint

◼ Time to Interactive

4

1. Background

5

1. Background

More advanced metrics

➢Above-the-Fold Time (AFT)

➢Object Index

➢Byte Index

➢Speed Index (SI)

➢More...

6

1. Background

Speed Index (SI)

◼ How fast the page is filled up with the above-the-fold visible elements
(i.e., crucial elements)

A

B

500 ms 1200 ms 3000 ms

Formal definition of SI

7

1. Background

𝑆𝐼 = න
0

𝐴𝐹𝑇

1 − 𝑉𝐶 𝑡 𝑑𝑡

AFT: Above-the-Fold Time
VC(t): Visual Completeness of the page’s

above-the-fold section at time t

A

B

500 ms 1200 ms 3000 ms

SI is being used retrospectively after page loading

Acting as a passive performance metric due to:

1. Integral calculation

2. Requiring the final rendered frame

“Fusing” SI into page loading

Proactively taking SI as an explicit heuristic to guide page loading in situ.

In this way, we might be able to effectively improve SI of page loads.

8

2. Motivation

Measurement study

◼ Landing pages of the Alexa top 1,000 sites

◼ 3 PCs, 2 mobile phones

◼ Collecting network/rendering traces, snapshots, etc.

9

2. Motivation

Network uncertainties

◼ Different network access methods

◼ Bandwidth/latency variation

10

2. Measurement Findings

Browser execution uncertainties

◼ Client resource contention

◼ Varied number of background tabs opened by users

11

2. Measurement Findings

Viewport size uncertainties

◼ Diverse viewport sizes v.s. liquid layouts

12

2. Measurement Findings

width=500 px width=872 px width=1128 px

Different layout schemes of YouTube

Our Goal Obtaining SI-optimal scheduling

13

2. Motivation

Obstacles Network
Uncertainties

Browser Execution
Uncertainties

Viewport Size
Uncertainties

Dilemma SI-optimal scheduling cannot be achieved
in advance or in one shot!

Question How to handle uncertainties of web page loading?

Reactive scheduling

◼ Adapting to web page loading

1. Create a baseline scheduling (SI-optimal if no uncertainties)

2. Adjust to different viewport sizes (identify crucial elements)

3. Repair the baseline when uncertainties occur

14

3. SipLoader

“Reactive scheduling does not try to cope with uncertainty in creating
the baseline schedule but revises or re-optimizes the baseline schedule
when an unexpected event occurs.”

Dependency-merged greedy inference

◼ Page loading should obey dependencies

◼ Modeled as a dependency graph

15

3.1 Creating the Baseline

In which order should we load objects to achieve SI-optimal scheduling?

Dependency-merged greedy inference

Each web page object

1. Incurs time overhead to load (Loading cost)

2. Contributes to the visual completeness (SI gain)

16

3.1 Creating the Baseline

A 10/300

B 6/200 C 4/50 D 14/100

E 6/100 F 55/200 G 5/50

SI gain (%) / Loading cost (ms)

Topological sort-based approach
is too slow – O(n!)

A, B, C, D, E, F, G
A, C, B, D, E, F, G
A, D, B, C, E, F, G
…

A 10/300

B 6/200 C 4/50 D 14/100

E 6/100 F 55/200 G 5/50

Dependency-merged greedy inference

◼ Near-optimal solution

◼ Heuristic: the cumulative nature of SI calculation

17

3.1 Creating the Baseline

A 10/300

B 6/200 C 4/50 D 14/100

E 6/100 F 55/200 G 5/50

𝑆𝐼 = න
0

𝐴𝐹𝑇

1 − 𝑉𝐶 𝑡 𝑑𝑡 𝑆𝐼 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑔𝑎𝑖𝑛

𝑐𝑜𝑠𝑡
𝑆𝐼 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ෍

𝑖∈𝑔𝑟𝑜𝑢𝑝

𝑔𝑎𝑖𝑛(𝑖)

𝑐𝑜𝑠𝑡(𝑖)

Object group of F

Predictive element region forest

How to adjust to different viewport sizes efficiently?

18

3.2 Identifying Crucial Elements

Liquid layout Crucial elements are uncertain until the page is loaded!

Server-client collaboration

Server Client

Preload the page Query crucial elementsElements’ possible positions

Predictive element region forest

◼ Determine elements’ possible positions:

Layout scheme might change when the viewport width changes

19

3.2 Identifying Crucial Elements

width=500 px width=872 px width=1128 px

Different layout schemes of YouTube

Predictive element region forest

◼ Identify layout schemes based on relative angles (server-side)

20

3.2 Identifying Crucial Elements

width=1400 px width=1080 px

Predictive element region forest

◼ Identify layout schemes based on relative angles (server-side)

21

3.2 Identifying Crucial Elements

𝛾2 = 90°

𝛼2 = 22° 𝛽2 = 22°

Relative angles change slightly under the same layout scheme

width=1400 px width=1080 px

Predictive element region forest

◼ Element coverage regions (possible positions) in each layout scheme

22

3.2 Identifying Crucial Elements

Element A Element B

Element C Element D

Region A
Region B

Region C Region D

Record element coverage regions
when the viewport width changes

(server-side)

Predictive element region forest

23

3.2 Identifying Crucial Elements

Region A
Region B

Region C Region D

User Viewport

◼ The client selects and efficiently
queries a k-d tree based on viewport
sizes to identify crucial elements

◼ Build regions’ convex hulls into k-d
trees (for each layout scheme)

The cumulative reactive scheduling framework

24

3. SipLoader

Crucial Element
Identification

Dependency-Merged
Greedy Inference

Server Client

Preparation Prediction Reaction
(Before Page Loading) (Beginning of Page Loading) (During Page Loading)

Dependency
Graph

Predictive Element
Region Forest

Baseline
Scheduling

1

2

3

4

Event-Driven Reactive Co-Scheduling

Network Uncertainties Network Stack

JavaScript
Engine

Rendering
Engine

Repaired
Scheduling

1

2

3

4Browser-Execution
Uncertainties

Creating the baseline schedule Online repairing
Leverage the cumulative nature of SI calculation React to the occurrence of uncertainties

The cumulative reactive scheduling framework

25

3. SipLoader

Creating the baseline schedule Online repairing
Leverage the cumulative nature of SI calculation React to the occurrence of uncertainties

Crucial Element
Identification

Dependency-Merged
Greedy Inference

Server Client

Preparation Prediction Reaction
(Before Page Loading) (Beginning of Page Loading) (During Page Loading)

Dependency
Graph

Predictive Element
Region Forest

Baseline
Scheduling

1

2

3

4

Event-Driven Reactive Co-Scheduling

Network Uncertainties Network Stack

JavaScript
Engine

Rendering
Engine

Repaired
Scheduling

1

2

3

4Browser-Execution
Uncertainties

Event-driven reactive co-scheduling

◼ Repair the baseline scheduling

◼ React to network/browser execution uncertainties

◼ In an event-driven manner

26

3.3 Repairing the Baseline

Receiving Pool

U

V

S
T

W

Evaluating

SI-Optimal ObjectObject Evaluated

Response Received
Fetched

Objects

New Requests

Sending

Requests

Sending Queue

ImageScriptScriptCSS

CSSScriptImage CSS

SI-Optimal Order

Domain A

......Domain B

...

Network Stack

JavaScript and Rendering Engine

Data Flow Event Flow Dependency

Response Received

Network fetches

Browser execution

Comparing with state-of-the-arts

◼ Vroom [SIGCOMM’17]: Server-aided dependency resolution

◼ Fawkes [NSDI’20]: Static template caching

Testbed

◼ Landing pages of random 300 sites in the Alexa top 1,000 list

◼ Network: {1, 10, 100} Mbps, {10, 25, 50, 75} ms latency

◼ Browser: Cold cache, warm cache

◼ Device: PC, mobile phone

27

4. Evaluation

Major results

◼ Cold cache: Improve SI by more than 30%

28

4. Evaluation

10 Mbps, 25 ms latency, 2.4 GHz 100 Mbps, 25 ms latency, 2.4 GHz 100 Mbps, 25 ms latency, 1.9 GHz

It is important to schedule object loading when network/computation resources are limited!

Major results

◼ Warm cache

29

4. Evaluation

SipLoader schedules both network fetches and
browser execution to achieve the (near-)optimal SI

Browser execution bottleneck Network/browser execution bottleneck

Beyond SI

◼ SipLoader also improves other metrics

30

4. Evaluation

Dependency graph is generated in advance Crucial elements have higher priorities

◼ We uncover the key challenge of using advanced web page performance
metrics (such as Speed Index) to guide page loading – the uncertainties
during page loading make it impossible to obtain the optimal scheduling in
advance or in one shot.

◼ We present SipLoader, an SI-oriented page load scheduler that leverages
the cumulative reactive scheduling framework. It does not deal with
uncertainties in advance, but repairs the baseline scheduling when
uncertainties actually occur. SipLoader improves the average SI by 33.6%.

◼ Source code and data are available at https://siploader.github.io/

31

5. Conclusion

Thanks!
Q & A

	幻灯片 1: Fusing Speed Index during Web Page Loading
	幻灯片 2: Outline
	幻灯片 3: 1. Background
	幻灯片 4: 1. Background
	幻灯片 5: 1. Background
	幻灯片 6: 1. Background
	幻灯片 7: 1. Background
	幻灯片 8: 2. Motivation
	幻灯片 9: 2. Motivation
	幻灯片 10: 2. Measurement Findings
	幻灯片 11: 2. Measurement Findings
	幻灯片 12: 2. Measurement Findings
	幻灯片 13: 2. Motivation
	幻灯片 14: 3. SipLoader
	幻灯片 15: 3.1 Creating the Baseline
	幻灯片 16: 3.1 Creating the Baseline
	幻灯片 17: 3.1 Creating the Baseline
	幻灯片 18: 3.2 Identifying Crucial Elements
	幻灯片 19: 3.2 Identifying Crucial Elements
	幻灯片 20: 3.2 Identifying Crucial Elements
	幻灯片 21: 3.2 Identifying Crucial Elements
	幻灯片 22: 3.2 Identifying Crucial Elements
	幻灯片 23: 3.2 Identifying Crucial Elements
	幻灯片 24: 3. SipLoader
	幻灯片 25: 3. SipLoader
	幻灯片 26: 3.3 Repairing the Baseline
	幻灯片 27: 4. Evaluation
	幻灯片 28: 4. Evaluation
	幻灯片 29: 4. Evaluation
	幻灯片 30: 4. Evaluation
	幻灯片 31: 5. Conclusion

